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Abstract16

The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite17

retrievals of cloud occurrence are compared as a function of altitude and latitude. The18

largest disparities are observed at low altitudes over high southern latitudes. These datasets19

are cross referenced to ground–based measurements from the Atmospheric Radiation Mea-20

surement (ARM) West Antarctic Radiation Experiment (AWARE) campaign at McMurdo21

Station, Antarctica. Compared to AWARE observations, both 2BCL5 and DARDAR22

underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguish-23

ing roughly one third of cloud occurrences observed by AWARE at 0.5 km. While DAR-24

DAR identifies greater cloud occurrences than 2BCL5 below 1.5 km, cloud occurrence25

values for the two datasets have similar differences relative to ground-based measurements.26

Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely27

due to a larger quantity of false positives associated with radar ground clutter or atten-28

uated lidar retrievals. DARDAR cloud occurrences match better with AWARE than 2BCL529

above 5 km. However, the likely underestimation of ground-based measurements at higher30

altitudes suggests DARDAR may underestimate high level cloud occurrence. Finally, both31

datasets indicate the presence of liquid containing clouds at temperatures within the ho-32

mogeneous freezing regime, despite the fact that the ECMWF-AUX dataset implemented33

in their processing clearly indicates temperatures below -38 ◦C. Using AWARE radiosonde34

(ECMWF-AUX) temperature data, we find that 2BCL5 detects 13.3% (13.8%) of mixed35

phase clouds below -38 ◦C, while DARDAR detects 5.7% (6.6%) of mixed phase and 1.1%36

(1.3%) of liquid phase clouds below -38 ◦C.37

1 Introduction38

Clouds play a critical role in the Earth’s energy balance. They can act to cool the39

surface by reflecting incoming solar radiation back into space or warm the surface by ab-40

sorbing outgoing infrared radiation and radiating towards the surface (Marshall & Plumb,41

2008). Although all clouds have an effect on the climate, clouds over the oceans are es-42

pecially important due to the strong contrast in albedo between the sea surface and clouds.43

This means that the surface radiation budget over the ocean is more sensitive to cloud44

coverage than over land (Cess, 1990). These effects are greatest over the Southern Ocean45

which has an annual mean cloud coverage of around 80% - 90% (e.g., Kay et al., 2012;46

McCoy et al., 2014; Matus & L’ecuyer, 2017).47

In this study, satellite measurements are used to evaluate cloud occurrence and cloud48

phase globally, with a focus over Southern Hemisphere high latitudes. Due to the lim-49

itations of satellite–based datasets in this region, a ground–based dataset is needed for50

independent examination of low level cloud. Unfortunately, ground–based measurements51

which vertically resolve cloud and cloud phase over the Southern Ocean are very rare52

due to the complicated logistics associated with collecting measurements from shipborne53

platforms. As such, ground–based measurements from the AWARE campaign over Mc-54

Murdo Station in Antarctica are used as a representation of cloud at southern high lat-55

itudes. The AWARE dataset provides detailed cloud occurrence and phase measurements56

described in more detail in section 2.4, and is used for comparison with satellite–based57

measurements.58

Comparisons between observations and models indicate significant shortwave ra-59

diation biases over the Southern Ocean with magnitudes of up to 30 Wm-2 (Trenberth60

& Fasullo, 2010). This shortwave bias induces warm sea surface temperature biases in61

climate simulations (Hyder et al., 2018), which limit the accuracy of models. The short-62

wave bias observed in the Southern Ocean has been identified as a contributory factor63

in a number of issues in models, such as the double–Intertropical Convergence Zone (e.g.,64

Hwang & Frierson, 2013), errors in the meridional energy transport (e.g., Mason et al.,65

2015), biases in the position of the Southern Hemisphere storm track (e.g., Ceppi et al.,66
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2012) and the intensity of the Southern Hemisphere jet (e.g., Kay et al., 2016). Reduc-67

tion of the shortwave bias over the Southern Ocean is thus critical to improving the sim-68

ulation of climate at the Southern hemisphere mid- to high-latitudes.69

Identifying the sources of these biases in climate models is an active and ongoing70

area of research. Though, Hyder et al. (2018) identified that 70% of the sea surface tem-71

perature bias in the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate72

models relative to observations can be attributed to issues associated with the represen-73

tation of clouds. Other work has shown that problems with the models include simulat-74

ing too little cloud cover (e.g., Bodas-Salcedo et al., 2012; Schuddeboom et al., 2018; Kuma75

et al., 2020), excessive sunlight absorbed by the ocean surface (e.g., Trenberth & Fasullo,76

2010; Hyder et al., 2018), a lack of clouds in the cold sectors of cyclones (e.g., Bodas-77

Salcedo et al., 2014), and a lack of reflective supercooled water clouds (e.g., Bodas-Salcedo78

et al., 2016; Kuma et al., 2020). Work has also shown that the bias over the Southern79

Ocean is not a single issue since there are different biases at higher and lower latitudes80

(Schuddeboom et al., 2019; Kuma et al., 2020).81

Ice hydrometeors and water droplets have differing radiative properties and there-82

fore reflect and absorb different levels of incoming shortwave radiation (e.g., Haynes et83

al., 2011; Scott & Lubin, 2014; Vergara-Temprado et al., 2018). Previous work has iden-84

tified that supercooled clouds are very common over the Southern Ocean and Antarc-85

tica (e.g., Chubb et al., 2013; Jolly et al., 2018; Listowski et al., 2018; Morrison et al.,86

2011) and are potentially a major contributor to known model biases (e.g., Bodas-Salcedo87

et al., 2016; Kay et al., 2016; Kuma et al., 2020). In particular, Bodas-Salcedo et al. (2016)88

identified that clouds with supercooled tops contribute between 27 and 38% to the to-89

tal reflected solar radiation over the Southern Ocean, and suggested that climate mod-90

els poorly simulate these clouds. Models that overestimate the amount of ice cloud will91

produce a positive shortwave radiation bias, due to changes in the cloud albedo. As the92

introduction of ice into supercooled liquid clouds also causes the rapid growth of ice crys-93

tal at the expense of the liquid droplets (Vergara-Temprado et al., 2018), a minor error94

representing cloud phase can have large impacts.95

Boundary layer observations by satellite instruments are limited by the presence96

of an almost continuous cloud cover in the Southern Ocean which acts to obscure low-97

level clouds. Unfortunately, measurements from satellites using passive instruments such98

as the Moderate Resolution Imaging Spectroradiometer (MODIS; Salomonson et al., 2002)99

and the International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer,100

1999) can only observe radiation scattered or emitted from the cloud top of optically thick101

clouds. Therefore, one can accurately identify the cloud properties at the top of the cloud102

with passive instruments, but cannot resolve the full vertical profile of clouds in most103

cases. Instead, active instruments such as those aboard the CloudSat and Cloud-Aerosol104

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites need to be used105

to investigate cloud vertical structure.106

Due to the limitations of satellite observations in the lower troposphere, ground based107

measurements from sub–Antarctic and Antarctic sites can provide essential information108

about cloud vertical structure. Surface based lidar instruments can detect layers of liq-109

uid water in the boundary layer, but similar to space–borne lidars, their signal becomes110

attenuated by optically thick cloud. Ground based radars can penetrate through these111

optically thick clouds, but miss a portion of the optically and geometrically thin high-112

altitude ice clouds due to a lack of sensitivity (Protat et al., 2006, 2010). In this study,113

we compare two sets of satellite observations with ground-based observations made at114

an Antarctic site to gain insight into the level of underestimation of low-level cloud oc-115

currence across high Southern latitudes.116
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2 Datasets and Methods117

2.1 The CloudSat and CALIPSO satellites118

The satellite datasets used in this study are merged products created from Cloud-119

Sat and CALIPSO observations. Launched together in April 2006, these satellites fol-120

low each other closely in orbit, initially as part of the A-Train constellation of satellites121

occupying a low Earth orbit (Stephens et al., 2002) and their measurements can be used122

to investigate the vertical distribution and properties of cloud. A partial equipment fail-123

ure in 2017 forced CloudSat into a lower orbit to preserve the longevity of the instru-124

ment. CALIPSO was also moved into this lower orbit so that the two could continue to125

be used in conjunction. CloudSat has operated in daylight-only mode since 2011 due to126

a battery anomaly, which has inhibited nighttime measurements and reduced the qual-127

ity of measurements collected during the sunlit portion of its orbit (Nayak, 2012).128

The Cloud Profiling Radar (CPR), a 94 GHz radar that uses 3.3 µs pulses, is the129

primary instrument onboard the CloudSat satellite (Stephens et al., 2002). The main130

instrument onboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization131

(CALIOP) (Winker et al., 2007). CALIOP transmits two laser pulses at wavelengths of132

1064 nm and 532 nm simultaneously and measures backscatter data at two polarisations.133

The backscattered signal is used to derive vertical profiles of aerosol and cloud proper-134

ties, and the ratio of backscatter at the two wavelengths is used to discriminate between135

clouds and aerosols as well as to determine the composition of cloud (Winker et al., 2009;136

Z. Liu, 2009). The lidar depolarisation ratio can also be used to estimate the phase of137

scattering hydrometeors as either ice or liquid water (Sassen, 1991; Hu et al., 2009). Cloud-138

Sat’s CPR, has a horizontal footprint of 1.4 km x 1.8 km, and vertical resolution of 485139

m up to a height of 25km (Stephens et al., 2008). CloudSat uses the strength of the sig-140

nal reflected off hydrometeors to determine cloud vertical structure. However, Cloud-141

Sat is affected by surface clutter below approximately 1.2 km (cf. Marchand et al., 2008;142

Tanelli et al., 2008) while the CALIPSO lidar signal is attenuated by passing through143

optically thick cloud.144

2.2 The 2BCL5 data product145

In this study we use the 2B-CLDCLASS-LIDAR R05 (2BCL5) dataset generated146

by combining measurements from CloudSat and CALIPSO to determine the vertical dis-147

tribution of clouds, cloud phase, and cloud type (Sassen et al., 2008; Wang, 2019). Be-148

cause of the different horizontal and vertical resolutions of the two instruments, data from149

several CALIOP footprints are matched to the larger CPR footprints. 2BCL5 has res-150

olutions of 60 m in the vertical and 1 km in the horizontal. Unfortunately, the CALIOP151

linear depolarisation ratio measurement is limited by the attenuation of the lidar signal152

through thick clouds, so the 2BCL5 data product does not use this data to derive cloud153

phase. Instead, differences between the number concentration, vertical distribution and154

radiative properties of ice particles and water droplets are used to generate a temper-155

ature dependent radar reflectivity (Ze) threshold (cf. Zhang et al., 2010). This Ze thresh-156

old is used alongside the integrated attenuated lidar backscattering coefficient and cloud157

base and top temperatures to distinguish between ice, liquid, and mixed phases cloudy158

air volumes (see Wang, 2019). The 2BCL5 product uses ancillary data from the ECMWF-159

AUX (Partain, 2007) product to provide temperature data.160

Using 2BCL5 observations from 2016, cloud occurrence is derived as a function of161

altitude for different cloud phases. The vertical extent of the cloud is determined using162

the CloudLayerBase and CloudLayerTop fields. Using these heights, vertical bins are then163

created in between the cloud base and cloud top at a resolution of 60m. Cloud occur-164

rence is assigned to the bins using the CloudFraction field. This process is repeated for165

each separate cloud layer in the 2BCL5 detection. Further partitioning using informa-166

tion about the three phase classification options produces separate cloud masks for each167
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phase. Profiles are summed and then normalised by using the total number of measure-168

ments.169

2.3 The DARDAR data product170

The second satellite dataset used in this study is the raDAR/liDAR (DARDAR)171

dataset. DARDAR is also a merged product derived from CloudSat and CALIPSO mea-172

surements (Delanoë & Hogan, 2010), and uses ancillary temperature information from173

ECMWF-AUX. It therefore uses identical inputs to the 2BCL5 dataset. DARDAR v.2.11174

(Ceccaldi et al., 2013) was also obtained for 2016, chosen to coincide with ground based175

measurements also used in this study. DARDAR provides vertically resolved profiles of176

cloud phase, identifying ice, mixed and liquid phase clouds. The phase determination177

algorithm also requires thermodynamic variables taken from the ECMWF-AUX prod-178

uct. Similarly to 2BCL5, CALIPSO footprints are matched to CloudSat resolution for179

merging. Likewise, DARDAR has resolutions of 60 m in the vertical and 1 km in the hor-180

izontal. DARDAR cloud phase classification processes are detailed in Delanoë and Hogan181

(2010), but were updated in Ceccaldi et al. (2013) upon the release of the DARDAR v2182

product.183

DARDAR cloud measurements are grouped into a categorization mask that sep-184

arates cloud into different categories. While it includes cloud features such as supercooled185

water and ice hydrometeors, it also contains features such as aerosols and ground clut-186

ter not relevant to this study. To produce vertical profiles of cloud occurrence, the ap-187

propriate features (such as supercooled and water cloud) are selected to partition the188

data into clouds masks associated with the different phases. As for 2BCL5, these cloud189

masks are combined to generate cloud occurrences. Cloud occurrence profiles for each190

phase are merged by summing the cloud occurrence across each vertical level and nor-191

malised using the total number of measurements.192

2.4 The AWARE dataset193

The ground–based observations obtained during the 2016 Atmospheric Radiation194

Measurement (ARM) West Antarctic Radiation Experiment (AWARE) field campaign195

in Antarctica are used in this study. The AWARE campaign took place between Novem-196

ber 2015 and January 2017 (Lubin et al., 2020), primarily at McMurdo Station (77.85◦S,197

166.72◦E), and provides an unprecedented cloud and radiation dataset in this region (Lubin198

et al., 2020). In this study, we focus on AWARE measurements of cloud occurrence, cloud199

phase, and temperature.200

The AWARE dataset used in this study includes hourly cloud masks generated from201

Ka-Band ARM Zenith Radar (KAZR; Widener et al., 2012) and the High Spectral Res-202

olution Lidar (HSRL; Eloranta, 2005) measurements from McMurdo Station. These mea-203

surements are then gridded onto a fixed 7.5 m and 10 s vertically- and temporally-spaced204

grid, as detailed in Silber et al. (2018). This dataset spans from 1 January to 31 Decem-205

ber 2016. KAZR was operated in two interleaved modes; a moderate sensitivity mode206

was used to detect upper–tropospheric clouds and a general mode used to detect lower–207

tropospheric clouds. We also use radiosonde soundings of temperature gathered twice208

daily and linearly gridded to the vertical grid of the hourly cloud masks (cf. Silber et209

al., 2018). AWARE observations include a significant quantity of cloud observations whose210

phase could not be identified, particularly at high altitudes, due to the attenuation of211

the lidar signal.212

Both the KAZR and HSRL datasets have a high uptime, with more than 97% to-213

tal data availability during 2016 (Silber et al., 2018). However, specific hours with low214

data availability might still cause a potential sampling bias in our analysis. Therefore,215
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we set a hourly KAZR and HSRL data availability threshold of 75% (45 min) for cloud216

profiles to be considered in this analysis, this effectively rejects 2.3% of the AWARE dataset.217

2.5 Combined Satellite and Ground-based Processing218

To inter-compare the AWARE, 2BCL5 and DARDAR datasets, all of the obser-219

vational datasets need to be constrained both spatially and temporally. First the satel-220

lite data was masked so that only observations falling within a 5 degree by 5 degree lat-221

itude/longitude box centered on McMurdo Station were used. The AWARE data was222

also masked so that only measurements within 3 hours before or after a CloudSat/CALIPSO223

overpass are considered. All measurements from CloudSat/CALIPSO and the AWARE224

datasets include both cloud and precipitation masks. Only the months of January, Oc-225

tober, November and December had significant quantities of coincident satellite and ground226

based observations. Observations were also available for the months of March and Septem-227

ber, however they did not include enough passes to provide sufficient statistics for eval-228

uation. The passes used for comparison with the AWARE dataset were further filtered229

to only include passes where both 2BCL5 and DARDAR have concurrent observations,230

which gave a total of 180 passes.231

The observational region (5 degree by 5 degree latitude/longitude box centered on232

McMurdo Station) was identified so that it would be large enough to contain a consid-233

erable number of satellite passes, but small enough to exclude the Trans-Antarctic moun-234

tains (See McErlich (2020), section 4.1.2). The temporal coincidence was chosen to en-235

sure that the different instruments would observe the same synoptic weather patterns.236

Work by Coggins et al. (2014) used the k–means clustering technique to produce a syn-237

optic climatology of the Ross Sea and Ross Ice Shelf regions and identified the charac-238

teristic time periods of each synoptic state in the region persisted for between 13 and239

20 hours. A later study by Jolly et al. (2018) used this synoptic climatology to quan-240

tify the vertical distribution of cloud occurrence, phase, and type over the Ross Ice Shelf241

and southern Ross Sea, which encompasses McMurdo Station. They found large differ-242

ences between the synoptic regimes relative to seasonal variation for the cloud occurrence243

as a function of altitude (see also Silber et al., 2019). An additional study in which ex-244

amined Eulerian cloud persistence using the AWARE data was also carried out by Silber245

et al. (2018). They investigated the persistence of all cloud layers, as well as those that246

necessarily contain liquid water, and reported a mean cloud persistence between 5 and247

10 hours depending on the month. However, liquid-containing cloud layers have a much248

shorter mean persistence of 2.7 hours and 54% do not last for more than an hour. A tem-249

poral threshold of 1 hour from either side of the closest AWARE measurement during250

a satellite overpass (a 3 hour window in total) was selected based on these studies.251

3 Results252

3.1 Global distribution of satellite–based cloud occurrences253

Before using the ground–based AWARE observations, the 2BCL5 and DARDAR254

datasets are directly compared. Figure 1 shows the latitudinal cloud occurrence as a func-255

tion of altitude for the 2BCL5 dataset during 2016. While only 2016 is examined the mean256

values used in this analysis are representative of other years (analysis not shown). Fig-257

ure 1 displays cloud occurrence for the ice, mixed and liquid cloud phases, as well as the258

combined total alongside temperature isotherms generated using monthly averages of ECMWF-259

AUX temperature profiles (Partain, 2007). The 0 ◦C isotherm identifies the location where260

liquid hydrometeors will begin to freeze into ice phase cloud; at higher temperatures only261

liquid phase cloud should generally be present. The -38 ◦C isotherm was chosen to rep-262

resent the edge of the homogeneous freezing regime (Lamb & Verlinde, 2011). Below this263

temperature any supercooled water present in the cloud will freeze into ice crystals, such264

that only ice phase clouds will be present. Between the two thresholds there will be a265
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combination of ice and supercooled water, so liquid, ice and mixed phase clouds can be266

present.267

Figure 1. Latitudinal distribution of cloud occurrence as a function of altitude for the (a)

total amount of cloud occurrence, as well as the (b) ice , (c) mixed and (d) liquid phases de-

rived from the 2BCL5 observations from 2016. The dashed lines indicate isotherms of constant

temperature generated using ECMWF-AUX temperature information.

A notable feature of Figure 1 is a sharp reduction in the amount of cloud detected268

by 2BCL5 below an altitude of 1 km, present across all latitudes and phases. This high-269

lights limitations in the 2BCL5 dataset at detecting cloud below this altitude. Figure270

1b shows that ice phase cloud is absent in the tropical and subtropical regions below 5271

km, where temperatures are higher, although there are some samples at temperatures272

below the 0 ◦C isotherm where ice phase clouds are present. Figure 1c shows that mixed273

phase clouds are generally present at altitudes above the -38 ◦C isotherm and below the274

0 ◦C isotherm. Figure 1d shows liquid phase cloud at temperatures lower than 0 ◦C, which275

is plausible due to the presence of supercooled water. However as the 2BCL5 liquid clas-276

sification does not distinguish supercooled water as a separate classification, further anal-277

ysis assessing the quality of liquid phase partitioning cannot be done. The reduction of278

cloud observed by 2BCL5 below 1 km has particular implications over the Southern Ocean279

(50 ◦S - 75 ◦S) where low level cloud occurrence peaks, but where it is also considered280

to be underestimated in models (Bodas-Salcedo et al., 2012; Schuddeboom et al., 2018;281

Kuma et al., 2020).282

Figure 2 shows the differences between DARDAR and 2BCL5 cloud occurrence rates283

as a function of latitude and altitude. As 2BCL5 and the DARDAR datasets are gen-284

erated from the same satellite data, any differences between these two datasets is a re-285

sult of the dataset processing. Figure 2a shows that overall 2BCL5 detects more cloud286

than DARDAR, except below 1 km where DARDAR identifies greater cloud occurrences.287

These differences are greatest near 65 ◦S, over the Southern Ocean and Antarctic region.288

When the total cloud occurrence is partitioned into the ice, mixed, and liquid cloud phases289

further differences between the datasets become apparent. Figure 2c shows that 2BCL5290
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Figure 2. Differences in cloud occurrence between DARDAR and 2BCL5 during 2016, broken

into (a) the total amount of cloud occurrence and (b) ice, (c) mixed and (d) liquid phase com-

ponents. A positive value indicates DARDAR has a greater cloud occurrence than the 2BCL5

product. The dashed lines indicate isotherms of constant temperature generated using ECMWF-

AUX temperature information.

always detects a larger occurrence of mixed phase cloud than the DARDAR dataset, with291

an absolute difference up to 25% over the Southern Ocean maximum at approximately292

65S. DARDAR classifies these clouds as either ice or liquid depending on temperature,293

as can be seen in Figure 2b and Figure 2d. Figure 2b also shows a clear regional sepa-294

ration of the 2BCL5 and DARDAR data. The difference between these regions match295

well with the position of the -38 ◦C isotherm, with DARDAR detecting more ice phase296

cloud at altitudes corresponding to temperatures in between the 0 and -38 ◦C isotherms297

than the 2BCL5 dataset. Previous work comparing and assessing algorithms for detect-298

ing phase over the Southern Ocean, Huang et al. (2012) found that between 40S - 65S299

DARDAR is dominated by ice phase cloud. This matches the results in Figure 2 where300

DARDAR displays predominantly ice phase cloud with little mixed phase cloud. Fig-301

ure 2a shows only small differences in 2BCL5 and DARDAR cloud occurrence between302

these isotherms, indicating the differences must be a result of the phase identification303

algorithms. Figure 2d shows DARDAR detects more liquid phase clouds below the 0 ◦C304

isotherm, with 2BCL5 classifying the cloud in this region as mixed phase cloud (Figure305

2c). Some portion of the observations classified as mixed phase cloud by the 2BCL5 al-306

gorithm also lie outside the 0 ◦C and -38 ◦C isotherms, which disagrees with the phys-307

ical limitations on cloud phase set by the temperature constraints defined by the ECMWF-308

AUX model output.309

3.2 Cloud occurrence as a function of altitude310

The greatest differences in cloud occurrence between 2BCL5 and DARDAR lie in311

their representation of low–level clouds over the Southern Ocean. This provides a strong312

motivation for a more detailed investigation of this region which includes the usage of313
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ground based radar/lidar data. The cloud occurrence rate over McMurdo Station as a314

function of altitude for each of the AWARE, 2BCL5 and DARDAR datasets is shown315

in Figure 3. These profiles are shown individually for January, October, November and316

December. Cloud profiles for each satellite overpass are averaged over the month and317

split into their constituent phases. The filled curves in Figure 3 represent the DARDAR318

(a-d) and 2BCL5 (e-h) cloud occurrences and the dashed curves represent the AWARE319

observations. The cloud occurrences from 2BCL5 in Figure 3 can be compared with pre-320

vious work investigating cloud phase using four years of 2BCL4 data over the Ross Sea321

and Ross Ice Shelf detailed in Jolly et al. (2018). In general, there is good agreement322

with respect to the mean cloud occurrence profiles obtained in this study and the results323

for the 2BCL4 dataset used in Jolly et al. (2018). This suggests that the 2016 2BCL5324

data is statistically representative of the long-term cloud patterns observed in this re-325

gion.326

Figure 3. Mean vertical profiles of cloud occurrence for different cloud phases derived from

observations over McMurdo Station during 2016. The dashed lines represent the AWARE cloud

occurrence and the filled curves represent coincident DARDAR (a - d) and 2BCL5 (e - h) cloud

occurrences. The number of passes are annotated at the top of the figure. The purple lines repre-

sents the mean (solid) and maximum (dashed) altitudes of the -38 ◦C isotherm across all passes,

derived from twice-daily radiosonde observations.

The AWARE cloud profiles show limited amounts of liquid phase clouds. These clouds327

are confined to the bottom 4 km of the atmosphere except during December (Figure 3d)328

where liquid phase clouds occur up to an altitude of 4.5 km. Liquid phase clouds have329

a maximum occurrence rate of 5%, with no obvious vertical structure across the months330

examined. The AWARE ice cloud phase extends much higher than the liquid phase cloud,331

but shows reduced frequency above an altitude of 4 km. This reduction is balanced by332

an increase in cloud occurrence in the ’unknown’ phase category. Ice phase cloud peaks333

at an altitude below 1 km during January and October (Figure 3a-b), but peaks at 2–334
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2.5 km during November and December (Figure 3c-d). The unknown phase clouds in the335

AWARE dataset dominate the cloud occurrence above altitudes of 4 km in all months,336

due to the extinction of the lidar signal preventing classification of the cloud phase. The337

altitudes at which the clouds are most commonly classified as unknown phase are the338

same altitudes at which ice phase clouds dominate the satellite datasets. This highlights339

that the unknown phase class predominantly represents ice (volume-wise) as also noted340

by (cf. Silber et al., 2018). Previous work detailed in (Jolly et al., 2018) also supports341

this interpretation.342

Figure 3a-d shows that the DARDAR cloud occurrence vertical profiles have liquid-343

containing clouds that extend up to an altitude of 6 km and a maximum occurrence of344

just over 5%. Mixed phase clouds are detected in the same altitude range as liquid phase345

clouds, but have a lower occurrence. The majority of DARDAR-detected clouds are clas-346

sified as ice phase and extend to an altitude of 10 km. The cloud occurrence maxima for347

ice phase cloud generally occurs between 2 and 3 km, but is observed at a lower altitude348

during October (Figure 3b). Below this maxima, DARDAR cloud occurrence falls rapidly349

to values less than 10% below 1 km. No liquid or mixed phase cloud is identified in the350

DARDAR dataset above the monthly maximum level of the -38 ◦C isotherm, indicat-351

ing DARDAR is conforming to liquid and mixed phase temperature constraints correctly.352

Figure 3e-h identify vertical profiles of cloud occurrence for the 2BCL5 data prod-353

uct. These shows liquid phase cloud occurrences of up to 10% between the surface and354

5 km, with the maximum occurrence between 0.3 and 1 km. Liquid phase cloud occur-355

rence tends to drop off rapidly at altitudes above the maxima, although this drop is not356

as rapid in the summer months (December and January). The maximum occurrence of357

mixed phase cloud is consistent over all the examined months, falling between 2 and 3358

km. October (Figure 3f) has the lowest quantity of mixed phase clouds compared to other359

months and shows no mixed phase cloud occurrence above 4 km. This is likely a reflec-360

tion of the low altitude of the -38 ◦C isotherm in this month. Interestingly, the other months361

show mixed phase clouds up to 6.5km, meaning that clouds are observed above the max-362

imum level of the -38 ◦C temperature isotherm derived from radiosondes. In particular,363

in January mixed phase clouds are present up 9 km which is much higher than the 7 km364

maximum of the -38 ◦C isotherm (Figure 3e). This shows clear limitations in how the365

2BCL5 mixed phase cloud occurrence is determined with respect to temperature. The366

representation of cloud phase in the DARDAR dataset is better confined by the -38 ◦C367

isotherm than 2BCL5.368

Comparison of the monthly mean cloud occurrence profiles from the two satellite369

datasets in the vicinity of McMurdo station shows that the 2BCL5 dataset has system-370

atically higher cloud occurrences than the DARDAR dataset, except below 1 km where371

DARDAR has a higher occurrence of cloud than the 2BCL5 dataset. This matches with372

the global result displayed in Figure 2. Although these datasets differ, the relationship373

between cloud occurrence and altitude is similar in both datasets in general.374

Comparison of the cloud occurrence profiles show that at a higher altitude the AWARE375

dataset likely underestimates cloud compared to the satellites datasets and at lower al-376

titudes there is an underestimation of 2BCL5 and DARDAR cloud occurrences compared377

to AWARE. The satellite–based datasets are unable to detect a high number of clouds378

below 1 km, and conversely, the ground–based measurements are unable to detect as many379

clouds as 2BCL5 above 4km. As AWARE observations are often attenuated at higher380

altitudes, the good match with DARDAR observed might suggest that DARDAR is ac-381

tually underestimating cloud occurrence. Therefore, we postulate that differences between382

2BCL5 and DARDAR above 1 km are a result of an underestimation in DARDAR cloud383

occurrence. The discrepancy between the satellite– and ground–based peak in cloud oc-384

currence as a function of altitude indicates that neither can obtain a complete picture385

of the vertical profile of cloud occurrence in this region.386
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Examination of the liquid phase cloud profiles shows a number of differences be-387

tween the three datasets. Liquid phase cloud profiles for AWARE match well with the388

DARDAR profiles during November (Figure 3c) and December (Figure 3d), but match389

more poorly in January and October (Figure 3a and b). It is likely that November and390

December were dominated by optically-thin clouds that both datasets capture, while Jan-391

uary and October were dominated by frequent frontal systems, that resulted in the large392

discrepancies between the satellite and ground–based measurements. Overall, neither the393

2BCL5 or DARDAR datasets consistently agree with the liquid phase cloud reported by394

the AWARE dataset. Given the known weaknesses in the satellite datasets at detecting395

low–level cloud, this is expected. Ice-only phase cloud profiles are difficult to compare,396

due to both a lack of a reliable mixed phase cloud classification in the AWARE dataset397

and discrepancies in the definition of ice-only clouds in the satellite datasets.398

3.3 2BCL5 and DARDAR cloud detections compared to AWARE399

Figure 3 shows that both 2BCL5 and DARDAR underestimate cloud occurrence400

at low altitudes compared to AWARE observations, but is limited as it does not provide401

a direct comparison of individual profiles. To compare the individual profiles between402

the datasets, the frequency of cloud detections between 2BCL5, DARDAR, and AWARE403

for each pass over McMurdo Station during 2016 is examined. Cloud detections for the404

space–borne (S) and ground–based (G) observations are separated into three categories:405

1. Where both the space–borne and ground–based observations identify cloud de-406

tections (The intersection of both the space–borne and ground–based observations407

is identified, S ∩ G).408

2. Where only the ground–based observations has a cloud detection (The intersec-409

tion of the ground–based observations with the complement of the space–borne410

observations is identified, Sc ∩ G).411

3. Where only the space–borne observations has a cloud detection (The intersection412

of the space–borne observations with the complement of the ground–based obser-413

vations is identified, S ∩ Gc).414

Figure 4 shows a comparison of the detection frequency between 2BCL5 and AWARE415

(a, d, g) and DARDAR and AWARE (b, e, h) for the three previously defined categories.416

This allows us to assess if one or both the space–borne and ground–based instruments417

detect cloud at a particular altitude. The detection frequency is defined as the propor-418

tion of the time across all passes where the underlying conditions between the two sets419

are satisfied. Differences in the detection frequency for each category are displayed in420

Figure 4 (c, f, i) to highlight the discrepancies between 2BCL5 and DARDAR.421

Figure 4 a shows that above 1 km AWARE observations detect clouds that are not422

identified by the 2BCL5 dataset approximately 10% of the time. Below 1 km the AWARE423

dataset detects a greater amount of clouds than observed by 2BCL5, with a maximum424

difference of 53%. As such, 2BCL5 is unable to accurately detect low altitude clouds rel-425

ative to ground-based observations. Conversely, Figure 4d shows that the 2BCL5 has ob-426

servations undetected by AWARE 10% - 20% from near the surface to roughly 6.5 km.427

While cloud detections observed only by 2BCL5 at higher altitudes might be expected,428

it is surprising that 2BCL5 detects clouds that are not observed by AWARE at lower al-429

titudes.430

These results suggest either limitations in the AWARE dataset, differences between431

the satellite footprint and ground observations, or a potential issue with 2BCL5 falsely432

identifying clutter in the radar and/or lidar signals as cloud detections. Figure 4g shows433

that below 9 km the frequency of AWARE and 2BCL5 both detecting cloud increases434

until it peaks at 42% near 2 km after which a sharp decrease is observed.435
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Figure 4. Detection frequency as a function of altitude for (a, d, g) 2BCL5 and AWARE and

(b, e, h) DARDAR and AWARE showing where only the ground–based (a, b), space–borne (d,

e) or both (g, h) datasets have cloud detections. Differences in the detection frequency for each

categorisation are also displayed (c, f, i) to highlight the anomaly between 2BCL5 and DARDAR.

Figure 4b compares the DARDAR and AWARE datasets and shows that above 1436

km AWARE detects clouds unobserved in the DARDAR dataset approximately 10% of437

the time. Below 0.8 km the frequency where only AWARE observes a cloud detection438

rises to a peak of 44%. This likely indicates that both of the satellite datasets are un-439
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able to accurately observe clouds below 1 km. Figure 4e shows that between 1 and 7 km440

DARDAR detects clouds unobserved by AWARE roughly 10% - 20% of the time. Above441

7 km the frequency reduces to below 10% as detections become sparse. Interestingly, be-442

low 1 km the frequency increases to 25% of the DARDAR overpasses identifying a cloud443

unobserved by AWARE. This either suggest instrumental limitations in the AWARE dataset444

or issues with DARDAR where false positives in the radar/lidar signals are detected. The445

latter hypothesis is more likely given the known weaknesses in the satellite datasets. Fig-446

ure 4h shows that similar to 2BCL5, the frequency of both DARDAR and AWARE ob-447

serving cloud increases at lower altitudes, peaking at 42% at an altitude of 2 km, followed448

by a decrease at lower altitudes.449

While similar overall, both 2BCL5 and DARDAR display some differences in how450

their cloud detections match with AWARE. Above 1 km, DARDAR and 2BCL5 show451

good agreement, while below 1 km there is a large difference between the two datasets.452

Figure 4c shows that below 1 km cases where only AWARE detects a cloud is 10% - 15%453

greater for 2BCL5 than DARDAR. This is mirrored by Figure 4i where below 1km, DAR-454

DAR observes a greater amount of cloud detections than 2BCL5, which are also observed455

by AWARE. This result suggests that DARDAR agrees better with AWARE than 2BCL5456

below 1 km, while the two have comparable detectability elsewhere. However, this could457

be a result of DARDAR having greater cloud occurrences than 2BCL5 below 1 km, rather458

than an improved match with AWARE. Figure 4e shows that below 1 km, DARDAR has459

a greater amount of cloud detections where AWARE does not observe any cloud rela-460

tive to 2BCL5. This probably indicates that DARDAR is classifying noise in the radar/lidar461

signals close to the ground as clouds, resulting in a 10% - 15% larger false positive rate462

than 2BCL5.463

3.4 Ratios between satellite and ground–based detected cloud occur-464

rences465

The 180 satellite overpasses in which 2BCL5, DARDAR, and AWARE all detected466

clouds were examined and spatially and temporally colocated atmospheric profile from467

the different datasets were compared. Figure 5a and b show the ratio of 2BCL5 and DAR-468

DAR cloud occurrence to the AWARE cloud occurrence for each co-location, respectively.469

Figure 5 a and b also show the median value at each altitude for both 2BCL5/AWARE470

(red) and DARDAR/AWARE (black). The ratio between 2BCL5 and DARDAR is dis-471

played in Figure 5c with the median curve illustrated in blue.472

Figure 5a shows that the median ratio of cloud occurrence between 2BCL5 and AWARE473

match well between 1.5 and 4.5 km, with relative differences less than 10%. However,474

there is a large spread of values at this altitude range, which indicates that while it is475

common for the two datasets to detect similar cloud profile structures, this is not always476

the case. Below 1.5 km the median ratio shows that 2BCL5 underestimates cloud oc-477

currence compared to the AWARE dataset. This ratio decreases to a local minimum of478

0.24 at 0.8 km, corresponding to an underestimation in 2BCL5, identifying that 2BCL5479

only observes 24% of the cloud occurrence relative to the AWARE observations. Below480

0.8km the detectability of 2BCL5 improves slightly, with 2BCL5 observing 37% of AWARE481

cloud occurrence at 0.5 km, before steadily decreasing below 0.25 km. Above 4.5 km the482

two datasets also disagree, but with AWARE likely underestimating compared to 2BCL5.483

As the altitude increases the median ratio fluctuates up to an altitude of around 7.5 km484

and then steadily increases until AWARE observes between 37%–61% of cloud observed485

by 2BCL5. Above this altitude there is little consistency as the AWARE instruments have486

difficulties in detecting clouds at this altitude.487

Figure 5b also shows agreement between DARDAR and AWARE. Between 3 and488

5 km there is good agreement (within 10%). Extending this range to between 1.5 and489

6 km there is poorer agreement with differences of up to 20%. Similar to the 2BCL5 dataset,490
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Figure 5. The ratio between satellite and ground–based cloud occurrence at different alti-

tudes, for (a) 2BCL5/AWARE (b) DARDAR/AWARE and (c) 2BCL5/DARDAR. Both (a) and

(b) display the medians for 2BCL5/AWARE (red) and DARDAR/AWARE (black) while the

median for 2BCL5/DARDAR is shown on (c) in blue.

DARDAR starts to consistently underestimate cloud occurrence compared to AWARE491

below 1.5 km. The median drops to 0.37 at 0.5 km. This likely corresponds to limita-492

tions in DARDAR, which only observes 37% of cloud occurrence detected by AWARE493

at that altitude. As for the comparison with 2BCL5, the ratio between DARDAR and494
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AWARE cloud occurrence decreases towards the surface. Above 6 km the two datasets495

also disagree, with AWARE underestimating cloud occurrence compared to the DAR-496

DAR dataset. The median ratio fluctuates between 6 - 8 km, ranging from near even to497

altitudes where AWARE has 37% of the DARDAR occurrences. At higher altitudes the498

ratio changes rapidly as only a few profiles are available for the statistical analysis.499

Figure 5c shows that DARDAR consistently underestimates cloud occurrence com-500

pared to 2BCL5 above 1 km with only shows a few instances above 1 km where DAR-501

DAR detects more cloud. This is possibly a result of the lower cloud occurrences in DAR-502

DAR above 1 km (see Figure 2). Below 1 km there is clearly a wider range of ratios and503

we might expect that DARDAR would show greater cloud occurrence below 1 km com-504

pared to 2BCL5 based on Figure 4i. These ratios indicate that DARDAR may have greater505

numbers of false cloud detections than 2BCL5.506

3.5 Statistical evaluation of the 2BCL5, DARDAR and AWARE distri-507

butions of cloud occurrence508

The ratios of cloud occurrence rates clearly show distinct behaviours over differ-509

ent altitude ranges. In order to quantify these differences, statistical tests are applied510

to the distributions of cloud occurrence in 1 km altitude bins. Each of these regions are511

examined using a t-test and a KolmogorovSmirnov (K-S) test. The t-test is used to an-512

alyze the differences in the means of cloud occurrence distributions between the 2BCL5513

and AWARE and the DARDAR and AWARE datasets. The K-S test is used to com-514

pare whether the cloud occurrence distributions of 2BCL5 and AWARE or DARDAR515

and AWARE are statistically distinct from one another. The t-test produces a t-statistic516

(t), where a higher t-value indicates greater differences between the means of the dis-517

tributions. The K-S test produces a K-S statistic (D), which evaluates the distance be-518

tween the two cumulative distribution functions with a higher D-value corresponding to519

a greater distance. Both tests also produce a p-value, indicating the significance of the520

test statistics. If the p-value is less than a predefined significance level (α), then the cor-521

responding test statistics are considered statistically significant and the null hypothe-522

sis can be rejected. Simply put if a p-value is above the significance level it implies the523

satellites datasets agree with AWARE, while if it is below they are distinct from AWARE.524

The significance level is chosen to be 5% and the results of the statistical tests are dis-525

played in Figure 6.526

Analysing the low level cloud between 0 and 1 km, the t-test and K-S test show527

that both the means and distributions of 2BCL5 and DARDAR compared to AWARE528

are statistically distinct. The largest t-values over this region are -7.0 between 2BCL5529

and AWARE and -5.2 between DARDAR and AWARE. This indicates that the means530

of these cloud occurrences are very different in both cases. The D-values in this region531

are also large. Between 1 - 2 km, the K-S test indicates that the distributions of 2BCL5532

and DARDAR are statistically distinct compared to AWARE, while the t-test shows that533

the means cannot be considered different from AWARE. Between 2 - 5 km, 2BCL5 and534

DARDAR match well with AWARE, as both tests show that the means and distribu-535

tions are statistically similar. However, above 5 km the t-test shows drastically differ-536

ent results for the 2BCL5 data. The results of the t-test show that the means of the dis-537

tributions for the 2BCL5 and AWARE datasets cannot be considered to be drawn from538

the same distribution, while the DARDAR and AWARE values continue to show that539

the means are statistically similar. The K-S test continues to show show results above540

the significance threshold for both 2BCL5 and DARDAR, although the 2BCL5 D-values541

are clearly larger over this region. Given the relatively lower sensitivity of the AWARE542

data over this region, these results should be interpreted cautiously.543

Over the entire altitude range the DARDAR cloud occurrence distributions match544

better to the AWARE data than the 2BCL5 based on both t and D values. The largest545
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Figure 6. Results of the (a, b) t-test and (c, d) K-S test comparing the means and distribu-

tions of (a, c) DARDAR and AWARE and (b, d) 2BCL5 and AWARE. Red bars indicate where

the p-value is greater than the significance level, α = 0.05.

differences are seen above 5km where the t-tests consistently produce different results.546

This may seem to contradict the results that are shown in Figure 5, however this is due547

to differences in how these results should be interpreted. The statistics show that the548

underlying cloud occurrence distributions of DARDAR agree better with AWARE than549

2BCL5; However, the ratio analysis shows us that when specific cases are examined the550

2BCL5 data performs better. This implies that DARDAR might outperform 2BCL5 rel-551

ative to AWARE in the statistical aggregate, but when looking at specific times and lo-552

cations 2BCL5 generally matches better.553

3.6 Cloud occurrence as a function of temperature554

To further compare the cloud phases in the 2BCL5, DARDAR, and AWARE datasets,555

cloud occurrence was derived as a function of temperature. Temperature information was556

taken from twice-daily measurements from radiosondes launched at McMurdo Station,557

as well as the ECMWF-AUX temperature data. Figure 7 shows the normalised occur-558

rence of cloud phase at each temperature for the three datasets examined, using both559

the ground–based and reanalysis temperature information.560

Figure 7a shows 2BCL5 cloud occurrence identified relative to radiosonde temper-561

ature data. At temperatures above -8 ◦C, supercooled water dominates, but its occur-562

rence quickly falls off as the proportions of mixed and ice phase cloud increases at lower563

temperatures. Ice phase clouds dominate occurrence at temperatures lower than -35 ◦C.564

However, mixed phase clouds are identified at temperatures down to -60 ◦C, which is clearly565

unphysical. This pattern matches well with Figure 7b, which uses the ECMWF-AUX566

measurements instead of the radiosondes. Thus, the unphysical classification can not be567
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Figure 7. Normalised cloud occurrences from Figure 3 as a function of temperature for (a -

b) 2BCL5 (c - d) DARDAR and (e - f) AWARE. 2BCL5 and DARDAR cloud occurrences are

split into ice, mixed and liquid phases, and AWARE cloud occurrence into the ice, liquid and

’unknown’ phase classes (see text for details). White space indicates where cloud is undetected

and the dashed line indicates the edge of the homogeneous freezing regime at -38 ◦C.

attributed to differences between the ECMWF-AUX data and the corresponding AWARE568

radiosonde measurements. Figures 7c and d display the DARDAR temperature based569

cloud occurrence. The DARDAR results identify that apart from a large presence of liq-570

uid phase clouds above -10 ◦C, ice phase clouds dominate. However, small amounts of571

mixed and liquid phase cloud are present down to temperatures of -43 ◦C, which again572

is unphysical. Once again, the ECMWF-AUX temperature output shows reasonable agree-573

ment with the ground–based temperature.574

Figure 7e shows the AWARE cloud occurrence for different phases using the AWARE575

radiosonde measurements as the temperature reference. Most of the AWARE cloud de-576

tections are associated with the ’unknown’ phase, highlighting a clear limitation of the577

AWARE data. Liquid phase clouds are detected in relatively small fractions down to a578

temperature of approximately -35 ◦C. Ice phase cloud occurrence (detected with the HSRL)579

is more common than liquid and unknown phases at the higher temperatures but falls580

off significantly at lower temperatures, because of increasingly large amounts of unknown581

phase cloud detections. A secondary peak of ice cloud at -60 ◦C is partially associated582
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with polar stratospheric cloud detections in tropospheric cloud-free periods. This matches583

observations in Figure 3 where the ability to classify phase falls off as altitude increases584

(and conversely the temperature decreases), which is clearly due to the attenuation of585

the HSRL signal by low-level cloud. Figure 7f again shows a good match between the586

ECMWF-AUX and AWARE radiosonde temperature information, although the peak in587

the ice phase cloud at -60 ◦C is weaker.588

Cloud phase data from AWARE matches well with the boundary of the homoge-589

neous freezing regime at -38 ◦C. There is some uncertainty in this result due to the ma-590

jority of the clouds here being unclassified. The overall lack of liquid phase detections591

in AWARE does suggest that some of the unknown phase detections are associated with592

supercooled water. In both 2BCL5 and DARDAR, cloud measurements are found out-593

side the physical limits defined by the homogeneous freezing threshold. For clouds clas-594

sified as mixed phase by 2BCL5, 13.3% occur at temperatures below the -38 ◦C isotherm595

in the AWARE radiosonde measurements, and 13.8% for the ECMWF-AUX data prod-596

uct. For the DARDAR dataset 1.1% of clouds classified as liquid phase and 5.7% of clouds597

classified as mixed phase occur at temperatures below the -38 ◦C isotherm for the AWARE598

radiosonde measurements. When using ECMWF-AUX data as a reference 1.3% of clouds599

classified as liquid phase and 6.6% of clouds classified as mixed phase occur add tem-600

peratures below the -38 ◦C isotherm. This coincident temperature analysis shows that601

DARDAR also incorrectly classifies mixed phase cloud within the homogeneous freez-602

ing regime, albeit to a smaller extent than 2BCL5.603

4 Discussion604

Figure 3 shows that cloud occurrence for all phases have maximum values between605

1.5 and 3 km for both 2BCL5 and DARDAR. Below this level cloud occurrence falls off606

rapidly with lesser cloud occurrence below 1 km for 2BCL5 and 0.5 km for DARDAR.607

AWARE ground-based observations display a maximum in cloud occurrence at a slightly608

lower altitude (between 1 and 2.5 km), but also show larger cloud occurrences at lower609

levels. Above the maxima, AWARE cloud occurrence tends to fall off faster than the 2BCL5/DARDAR610

data. As the lidar signal used within the AWARE dataset is often attenuated above 4611

km, detection of high level clouds is likely underestimated. While the KAZR can still612

detect many of these clouds, it struggles to detect high level cirrus with small optical depths613

(Sassen & Khvorostyanov, 1998). Therefore neither 2BCL5, DARDAR or AWARE ap-614

pears to be able to observe the complete vertical structure of clouds. Thus, to obtain the615

full picture, a combination of ground–based and space–borne measurements are needed.616

However, merging these datasets is not straight forward because of the large disparities617

at nearly all altitudes. The underlying assumption that satellites have difficulties observ-618

ing low level cloud due to lidar attenuation by thick cloud layers was investigated briefly.619

In particular, we examined how the differences between cloud statistics in 2BCL5 and620

AWARE changed for both single–layer and multi–layer clouds (not shown; See McEr-621

lich (2020), section 5.3). We found that passes with single cloud layers have marginally622

better agreement with AWARE than passes with multiple cloud layers. While this sup-623

ports the assumption that attenuation of the lidar signal by multiple cloud layers is re-624

ducing the quality of comparison with AWARE, even in cases where only a single cloud625

layer is observed the low level satellite–based observations still struggle to match well626

with AWARE. Thus, this topic will require further work in forthcoming studies.627

The comparisons between the vertical profiles of cloud occurrence in AWARE, 2BCL5,628

and DARDAR (see Figure 5) establish three distinct regions; a region where the satel-629

lite likely underestimates cloud close to the ground, a region where the ground–based630

instruments likely underestimate at higher altitudes, and a region of approximate agree-631

ment in between. The statistical analysis in Figure 6 shows both 2BCL5 and DARDAR632

are substantially different from AWARE at low altitudes. It might be expected that DAR-633

DAR cloud occurrence would match better with the AWARE dataset than the 2BCL5634
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because DARDAR observes higher cloud occurrences below 1 km. However, this is not635

the case, as the altitude at which the satellite datasets begin to deviate from AWARE636

is essentially the same (see Figure 5). Thus, we conclude that even though DARDAR637

observes more clouds below 1 km than 2BCL5, it does not appear to be detecting low–638

level clouds more reliably than the 2BCL5 dataset. Instead, DARDAR appears to be de-639

tecting false positives in the lidar/radar signals by incorrectly interpreting noise close640

to the ground as clouds.641

These results are generally consistent with conclusions from previous studies (e.g.,642

Protat et al., 2014; Blanchard et al., 2014; Y. Liu et al., 2017; Alexander & Protat., 2018),643

which show underestimations of satellite–based cloud observations compared to ground–644

based observation (See McErlich (2020), section 5.1). For example, Alexander and Pro-645

tat. (2018) found underestimation of DARDAR cloud observations by a factor of three646

between 0.2 - 1 km compared with a ground–based lidar. However, their study only in-647

cluded low level optically-thin single cloud layers where both the ground based lidar and648

DARDAR masks could detect the cloud top and cloud base (lidar signal transmitted through649

cloud top). Y. Liu et al. (2017) also found that space–borne observations, such as the650

2B-GEOPROF-lidar dataset (Mace et al., 2009), begin to drop off significantly below651

1 km similar to this study. In particular, they note that below 0.5 km satellite–based ob-652

servations detect 2540% fewer clouds than observed by a ground–based lidar. One study653

by Mioche et al. (2015) found that over the Svalbard region in the Arctic satellite ob-654

servations overestimates cloud occurrence below 2 km compared to surface based micropulse655

lidar observations. However, the authors associated this overestimation with the short656

duration of their dataset. Previous work (e.g., Bodas-Salcedo et al., 2012; Schuddeboom657

et al., 2018; Kuma et al., 2020) has shown climate models underestimate low–level cloud658

compared to satellite datasets. Given that the satellite measurements in this paper are659

shown to underestimate low–level cloud occurrence compared to AWARE observations,660

the magnitude of these model errors could be larger than previously identified.661

For the mid-altitude region, the median ratio (Figure 5) shows that 2BCL5 and AWARE662

are in good agreement between 1.5 and 4.5 km and for the most part shows an equal amount663

of cloud (within 10%). DARDAR shows a good level of agreement with AWARE between664

1.5 and 6 km, extending further than 2BCL5, but the match is weaker (within 20%). This665

match between DARDAR and AWARE extending to a greater altitude is likely because666

both AWARE and DARDAR observe fewer clouds than 2BCL5 at these heights. The667

results of the statistical tests (Figure 6) show that both DARDAR and AWARE and 2BCL5668

and AWARE match well between 2 and 5 km, suggesting that the underlying cloud oc-669

currence distributions are well captured in this region.670

At altitudes greater than 6 km, the median ratio of cloud occurrence shows that671

both DARDAR and 2BCL5 detect more clouds than AWARE, but this is probably due672

to AWARE being unable to detect clouds rather than the satellite signals being dom-673

inated by false positives. The ratio between the satellite and ground–based measurements674

(Figure 5a/b) is variable at high altitudes and close to the ground because not all passes675

can be compared at all heights. Figure 4c and Figure 4f show that above 7 km the com-676

parisons between the two satellite datasets can only be made 10% of the time as the de-677

tection frequency decreases. This suggests that the underestimation of AWARE at high678

altitudes relative to 2BCL5 (Figure 5a) and DARDAR (Figure 5b) is potentially worse679

than stated. Below 1 km a similar pattern is observed where the amount of detected cloud-680

containing profiles that can be compared drops as the satellites are unable to observe681

clouds detected by AWARE. The t-tests in Figure 6 show divergent results for 2BCL5682

and DARDAR over this region, however due to the limitations with the AWARE dataset683

these should be interpreted with caution.684

Figure 7 shows that DARDAR and 2BCL5 observe mixed and liquid phase cloud685

regions outside theoretical temperature thresholds using both the AWARE radiosonde686

or ECMWF-AUX temperature data. However, the 2BCL5 data product classifies cloud687
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phase incorrectly more often than the DARDAR product despite the fact that both 2BCL5688

and DARDAR use the same ECMWF-AUX temperature data. Differences in how 2BCL5/DARDAR689

assign phase to their cloud detections must therefore explain why their phase determi-690

nations are different. For 2BCL5, each cloud layer with a distinct top and bottom is as-691

signed a single phase. DARDAR classifies each pixel in a cloud layer separately, so a cloud692

layer identified by 2BCL5 might have multiple classifications given by DARDAR. This693

could allow 2BCL5 to identify mixed phase at temperatures above the -38 ◦C isotherm694

altitude. In addition, mixed phase clouds are defined by the 2BCL5 product as a com-695

bination of ice and supercooled water existing in the cloud layer, resulting in the whole696

cloud being classified as a mixed phase cloud. If a mixed phase cloud exists at the cloud697

base where temperatures are between 0 ◦C and -38 ◦C, 2BCL5 would also assign a mixed698

phase to the cloud top where temperatures are below -38 ◦C and mixed phase cloud will699

not be present. Figure 1 identifies mixed phase cloud occurring at temperatures greater700

than 0 ◦C for 2BCL5. Similarly, the 2BCL5 phase classifications based on cloud layer701

allows mixed phase cloud to exist at temperatures greater than 0 ◦C if cloud layers with702

a cloud base temperatures greater than 1 ◦C and cloud top temperature smaller than703

-3 ◦C are identified.704

Due to a large proportion of the AWARE dataset clouds being classified as an un-705

known phase, it becomes difficult to draw comparisons between cloud phases for the satellite–706

and the ground–based datasets and to evaluate the reliability of liquid or mixed-phase707

detections by the satellite retrievals within the heterogeneous freezing regime. 2BCL5708

uses a process primarily driven by the temperature of the cloud top and cloud base, but709

also uses a temperature dependent radar reflectivity (Ze) threshold and an integrated710

attenuated backscattering coefficient (see Zhang et al., 2010). This splits the cloud into711

liquid, ice and mixed phase cloud containing a combination of ice and liquid. Contrast-712

ingly, DARDAR uses the strength of the lidar backscatter signal to locate any attenu-713

ating high backscatter layers. DARDAR then attempts to classify these layers based on714

temperature, horizontal extent of layer, thickness, reflectivity, and altitude. The algo-715

rithms used on the AWARE dataset use particulate backscatter cross-section and lin-716

ear depolarisation ratio to split the lidar observations of cloud into liquid and ice cloud.717

Due to attenuation of their lidar instrument, much of their cloud observations can not718

be reliably classified and are instead classified as unknown (Silber et al., 2020). In or-719

der to draw better comparisons between the phases, consistent processing algorithms with720

high fidelity, which could simultaneously consider satellite and ground-based measure-721

ment limitations, would be needed to be applied to the raw radar/lidar measurements722

rather than trying to match separately processed products together. Another possibil-723

ity is to use instrument simulators to help to interpret the different data relative to model724

data (Kuma et al., 2020b).725

5 Conclusions726

In this study vertical profiles of cloud occurrence and cloud phase for the 2BCL5727

and DARDAR satellite data products are compared to ground–based AWARE observa-728

tions taken during 2016. An assessment of the global distributions of 2BCL5 and DAR-729

DAR cloud occurrence found key differences between the two datasets quantification of730

low-level clouds and cloud phase. These differences are greatest for low–level clouds over731

high southern latitudes, providing a strong motivation for a detailed investigation of ver-732

tical cloud occurrence using ground–based measurements from the AWARE campaign733

over McMurdo Station in Antarctica.734

Satellite observations for both 2BCL5 and AWARE show an underestimation of cloud735

occurrence below 1.5 km compared to ground–based AWARE observations, with both736

2BCL5 and DARDAR observing 37% of clouds detected at AWARE at an altitude of737

0.5 km. Conversely, at altitudes greater than 6 km the AWARE dataset shows an un-738

derestimation of cloud occurrence compared to the 2BCL5 and DARDAR datasets, likely739
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attributed to the attenuation of the HSRL signal by low-level clouds and lower KAZR740

detectability at long ranges, where the radar volumes are significantly larger. In between741

these altitude ranges, there was a good agreement between AWARE and the satellite–742

based datasets.743

Below 1 km DARDAR observes a greater cloud occurrence than 2BCL5, and rel-744

atively lower occurrence at higher altitudes. Even though DARDAR observes more cloud745

below 1 km than 2BCL5, when compared to coincident and contemporaneous AWARE746

detections, it is not more reliable than the 2BCL5 dataset; DARDAR detects clouds that747

are not detected in the AWARE dataset between 20–25% of the time below 1 km com-748

pared to 10–15% for 2BCL5. This indicates that the higher DARDAR cloud occurrence749

below 1 km is likely associated with false detections where DARDAR is likely incorrectly750

classifying ground clutter or from the radar signal, or attenuated lidar retrievals, as cloud.751

2BCL5 and DARDAR estimates of cloud phase were also found to deviate from phys-752

ical constraints set by the temperatures at which a combination of ice and supercooled753

water should exist. 2BCL5 shows 13.3% (13.8%) of mixed phase clouds occurring at tem-754

peratures within the homogeneous freezing regime at temperatures below -38 ◦C, with755

mixed-phase observations down to a temperature of -60 ◦C (-58 ◦C) in the case where756

radiosonde (ECMWF-AUX) temperature data are used. DARDAR shows 5.7% (6.6%)757

of mixed phase and 1.1% (1.3%) of liquid phase clouds within the homogeneous freez-758

ing regime down to a temperature of -43 ◦C for radiosonde (ECMWF-AUX) data.759

Overall, the results presented here emphasize the need for a combination of ground–760

based and space–borne measurements to fully characterise cloud structure. This may be761

particularly important over the Southern Ocean and Antarctica, given the large dispar-762

ities observed in low-level cloud in this region and the tendency of climate models to un-763

derestimate low–level cloud compared to satellite datasets.764

While this study provides a comparison between satellite–based and ground–based765

measurements of cloud occurrence, results presented in this paper may not be represen-766

tative of the Southern Ocean as a whole. The analysis of how further ground–based datasets767

compare with satellite retrievals in and around the Southern Ocean remains an impor-768

tant area of work for future studies. Another aspect of this study that warrants further769

analysis are the cloud occurrence measurements of 2BCL5 and DARDAR, which are shown770

to have very significant differences of up to 30% over high southern latitudes. Given the771

discrepancies displayed between 2BCL5, AWARE and DARDAR in how cloud phase is772

determined, future work assessing what aspects of the phase determination algorithms773

cause these differences is also required and will be the subject of future work using lower-774

level data products.775
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J. M., . . . Delanoë, J. (2014). Reconciling ground-based and space-based934

estimates of the frequency of occurrence and radiative effect of clouds around935

darwin, australia. Journal of Applied Meteorology and Climatology , 53 (2),936

456-478. doi: 10.1175/jamc-d-13-072.1937

Rossow, W. B., & Schiffer, R. A. (1999). Advances in understanding clouds from is-938

ccp. Bulletin of the American Meteorological Society , 80 (11), 2261-2287. doi:939

10.1175/1520-0477(1999)0802.0.co;2.940

Salomonson, V., Barnes, W., Xiong, J., Kempler, S., & Masuoka, E. (2002). An941

overview of the earth observing system modis instrument and associated data942

systems performance. IEEE International Geoscience and Remote Sensing943

Symposium.. doi: 10.1109/igarss.2002.1025812944

Sassen, K. (1991). The polarization lidar technique for cloud research: A review and945

current assessment. Bulletin of the American Meteorological Society , 72 (12),946

1848-1866. doi: 10.1175/1520-0477(1991)0722.0.co;2947

Sassen, K., & Khvorostyanov, V. (1998). Radar probing of cirrus and contrails:948

Insights from 2d model simulations. Geophysical Research Letters, 25 (7), 975-949

978. doi: 10.1029/98gl00731950

Sassen, K., Wang, Z., & Liu, D. (2008). Global distribution of cirrus clouds951

from cloudsat/cloud-aerosol lidar and infrared pathfinder satellite observa-952

tions (calipso) measurements. Journal of Geophysical Research, 113 . doi:953

–24–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

doi:10.1029/2008jd009972954

Schuddeboom, A., McDonald, A. J., Morgenstern, O., Harvey, M., & Parsons, S.955

(2018). Regional regime-based evaluation of present-day general circulation956

model cloud simulations using self-organizing maps. Journal of Geophysical957

Research: Atmospheres, 123 (8), 4259-4272. doi: 10.1002/2017jd028196958

Schuddeboom, A., Varma, V., McDonald, A. J., Morgenstern, O., Harvey, M., Par-959

sons, S., . . . Furtado, K. (2019). Cluster-based evaluation of model compen-960

sating errors: A case study of cloud radiative effect in the southern ocean.961

Geophysical Research Letters, 46 (6), 3446-3453. doi: 10.1029/2018gl081686962

Scott, R., & Lubin, D. (2014). Mixed-phase cloud radiative properties over ross963

island, antarctica: The influence of various synoptic-scale atmospheric cir-964

culation regimes. Journal of Geophysical Research: Atmospheres, 119 (11),965

6702-6723. doi: doi:10.1002/2013jd021132966

Silber, I., Verlinde, J., Cadeddu, M., Flynn, C. J., Vogelmann, A. M., & Eloranta,967

E. W. (2019). Antarctic cloud macrophysical, thermodynamic phase, and968

atmospheric inversion coupling properties at mcmurdo stationpart ii: Radiative969

impact during different synoptic regimes. Journal of Geophysical Research:970

Atmospheres, 124 (3), 1697-1719. doi: 10.1029/2018JD029471971

Silber, I., Verlinde, J., Eloranta, E. W., & Cadeddu, M. (2018). Antarctic cloud972

macrophysical, thermodynamic phase, and atmospheric inversion coupling973

properties at mcmurdo station: I. principal data processing and climatology.974

Journal of Geophysical Research: Atmospheres, 123 (11), 6099-6121. doi:975

10.1029/2018jd028279976

Silber, I., Verlinde, J., Wen, G., & Eloranta, E. W. (2020). Can embedded liq-977

uid cloud layer volumes be classified in polar clouds using a single- frequency978

zenith-pointing radar? IEEE Geoscience and Remote Sensing Letters, 17 (2),979

222-226. doi: 10.1109/LGRS.2019.2918727980

Stephens, G., Vane, D., Boain, R., Mace, G., Sassen, ., K, Wang, Z., . . . Mitrescu,981

C. (2002). The cloudsat mission and the a-train: A new dimension of space-982

based observations of clouds and precipitation. Bulletin of the American983

Meteorological Society , 83 (12), 1771-1790. doi: 10.1175/bams-83-12-1771984

Stephens, G., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., . . . Marchand,985

R. (2008). Cloudsat mission: Performance and early science after the first986

year of operation. Journal of Geophysical Research: Atmospheres, 113 . doi:987

10.1029/2008jd009982988

Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., . . . Marc-989

hand, R. T. (2008). Cloudsat’s cloud profiling radar after two years in orbit:990

Performance, calibration, and processing. IEEE Transactions on Geoscience991

and Remote Sensing , 46 (11), 3560-3573. doi: 10.1109/tgrs.2008.2002030992

Trenberth, K. E., & Fasullo, J. T. (2010). Simulation of present-day and twenty-993

first-century energy budgets of the southern oceans. Journal of Climate, 23 (2),994

440-454. doi: 10.1175/2009jcli3152.1995

Vergara-Temprado, J., Miltenberger, A., Furtado, K., Grosvenor, D., Shipway, B.,996

Hill, A., . . . Carslaw, K. (2018). Strong control of southern ocean cloud re-997

flectivity by ice-nucleating particles. Proceedings of the National Academy of998

Sciences, 115 (11), 2687-2692. doi: 10.1073/pnas.1721627115999

Wang, Z. (2019). Cloudsat 2b-cldclass-lidar product process description and interface1000

control document. Retrieved from http://www.cloudsat.cira.colostate1001

.edu/sites/default/files/products/files/2B-CLDCLASS-LIDAR PDICD.P11002

R05.rev0 .pdf1003

Widener, K., Bharadwaj, N., & Johnson, K. (2012). Ka-band arm zenith radar1004

(kazr) instrument handbook. United States Department of Energy . doi: doi:101005

.2172/10358551006

Winker, D., Hunt, W. H., & McGill, M. J. (2007). Initial performance assessment of1007

caliop. Geophysical Research Letters, 34 (19). doi: 10.1029/2007gl0301351008

–25–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

Winker, D., Vaughan, M., Omar, A., Hu, Y., & Powell, K. (2009). Overview of the1009

calipso mission and caliop data processing algorithms. Journal of Atmospheric1010

and Oceanic Technology , 26 (11), 2310-2323. doi: 10.1175/2009jtecha1281.11011

Zhang, D., Wang, Z., & Liu, D. (2010). A global view of midlevel liquid-layer1012

topped stratiform cloud distribution and phase partition from calipso and1013

cloudsat measurements. Journal of Geophysical Research, 115 . doi:1014

10.1029/2009jd0121431015

–26–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 


